ML Similarity Measurement
12 Jul 2018
Distance
Euclidean Distance
d12=(x1−x2)2+(y1−y2)2
d12=(x1−x2)2+(y1−y2)2+(z1−z2)2
d12=k=1∑n(x1k−x2k)2
Standardized Euclidean distance
X∗=sX−m
also Weighted Euclidean distance
Manhattan Distance
also called City Block distance
d12=∣x1−x2∣+∣y1−y2∣
d12=k=1∑n∣x1k−x2k∣
Chebyshev Distance
d12=max(∣x1−x2∣,∣y1−y2∣)
d12=imax(∣x1i−x2i∣)
d12=k→∞lim(i=1∑n∣x1i−x2i∣k)k1
Minkowski Distance
Minkowski Distance is not a distance, but a set definition of distance.
d12=pk=1∑n∣x1k−x2k∣p
let’s say p
is var
p=1
city block distance
p=2
Euclidean Distance
- k→∞ Chebyshev Distance
Mahalanobis Distance
Hamming distance
Cosine
Jaccard similarity coefficient
Correlation coefficient and Correlation distance
Ref
- https://www.cnblogs.com/xbinworld/archive/2012/09/24/2700572.html